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Abstract--Preparatory to a subsequent dynamical study in Part II, aimed at calculating the 
rheological properties of geometrically-ordered models of concentrated suspensions, a purely 
kinematical study is here presented of the motion of a mobile spatially periodic array of identical 
convex particles, typically spheres, participating in a macroscopically homogeneous linear shear flow 
to which the suspension as a whole is subjected. The geometrical configuration of such particle-lattice 
suspensions is shown to evolve temporally in a manner dependent upon the initial lattice configuration 
and the specific bulk shearing motion to which the suspension is subjected. Under certain 
circumstances the particle-lattice system is found to reproduce itself periodically in time--or, less 
stringently--"almost" periodically. Precise circumstances under which this occurs are exhaustively 
delineated for the entire class of two-dimensional isochoric spatially homogeneous shearing motions, 
parametrized by a scalar ~ expressing the relative amounts of shear and vortieity present in the flow. 
This investigation is performed for both two- and three-dimensional lattices. (Eventual time 
averaging of the local, instantaneous, dynamical, interstitial fluid properties of these almost 
self-reproducing systems in Part II furnishes the rheological properties of the suspension.) Using 
concepts borrowed from Minkowski's geometry of numbers, calculations are outlined for establishing 
the maximum volume fraction of suspended particles that is kinematically possible for each shearing 
motion. This is observed to be always less than would obtain in a comparable static system. 

I. I N T R O D U C T I O N  

The purpose of the present series of papers, of which this is the first, is to rigorously derive 
the rheological properties of a spatially periodic suspension of particles dispersed in a fluid 
(not necessarily Newtonian) undergoing a linear shear flow. This geometrical arrangement 
is proposed as a tractable mathematical model of a concentrated suspension. 

Concentrated suspensions have been the subject of innumerable studies. Many of the 
results and interpretations issuing therefrom are summarized in the following books and 
review articles: Happel & Brenner (1965), Brenner (1970), Jeffrey & Acrivos (1976), 
Buyevich & Shchelchkova (1978), Herczyfiski & Piefikowska (1980) and Mewis (1980). 
Essentially four theoretical focii exist: (i) the dilute limit, including first-order hydrody- 
namic interactions (Batchelor 1974); (ii) cell models (Happel 1957); (iii) semiempirical 
models, the archetype of which is due to Mooney (1951); (iv) statistical models (cf. 
Herczyfiski & Piefikowska 1980). Each such analysis suffers from its own special 
limitations. Dilute limit approaches are faced after the first- or second-order terms with 
algebraically intractable calculations. The second and third methods are somewhat more 
successful when compared with experiment, but the underlying assumptions are often 
arbitrary. Moreover, because of their ad hoe nature, they cannot be rationally improved. The 
last method is faced with the usual problems of statistical models, namely of providing a 
rational source for the stochastic, nondeterministic hydrodynamic concepts introduced. 

Though numerous experimental studies have been performed, most are of limited 
interest due to the poorly defined suspension characterization. Happily, exceptions exist. 
Among these are included the carefully delineated investigations of Krieger (1972), Krieger 
& Eguiluz (1976) and Hoffman (1972, 1974). 

A markedly different theoretical approach is used here to analyze the behavior of 
concentrated suspensions, at least for circumstances where they may be reasonably well 
approximated as being spatially periodic in their mode of arrangement. The overwhelming 
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advantage of this configuration is that it can be made both rigorous and tractable. Its obvious 
drawback lies in the perfect order which is thereby imposed upon the suspension. Our 
approach to the topic embodies an unusual mixture of fluid mechanics, number theory and 
ergodic theory. In fact, the mathematics which will be employed here is somewhat delicate, 
in the sense that many of the functions arising in subsequent developments are pathological. 
Discontinuity, for instance, is the rule rather than the exception. This can, perhaps, be traced 
to the lack of any stochastic features--such as Brownian motion--that might otherwise act 
to smooth out these discontinuities. 

In this first paper of the series, attention will be restricted to the geometrical description 
and kinematics of a spatially periodic sheared suspension--a subject which does not appear 
to have been thoroughly addressed before. We have attempted here to make the develop- 
ments reasonably self-contained, without, however, burdening the reader with excessive 
detail. Thus, proofs and technical details will generally be relegated to the references cited. 

Section 2 reviews fundamental aspects of lattice theory and introduces the norm on a 
lattice set. The "intersection" of a straight line with the points comprising an integer lattice 
is discussed in connection with a series of classical theorems. 

Section 3 is devoted to regular arrangements of convex bodies situated at lattice points. 
This is, properly speaking, the subject of the geometry of numbers, pioneered by H. 
Minkowski (in order to solve and appropriately generalize some problems of quadratic forms 
posed by C. Hermite). One of the most important questions here is the explicit calculation 
(or bounding) of the maximum density obtainable by a regular arrangement of rigid convex 
bodies. In response to the kinematical issues posed, star bodies are briefly studied at the end 
of section 3; a classical example of such a body is the domain bounded between the branches 
of a hyperbola. The basic problem here is to find those lattices every point of which lies 
outside of the star body; such a lattice is said to be admissible. 

Next, in section 4, we introduce the notion of relative lattice movement. Using the norm 
defined in section 2, it becomes possible to define the concept of "almost periodicity" (in 
time) of such lattice motions. To take account of the mutual impenetrability of the solid 
particles comprising the suspension, we define compatible motions. This compatibility 
condition is shown to be equivalent to the admissibility of the initial lattice with respect to a 
star body deduced from the prescribed properties of both the particle and the macroscopic 
flow. Our analysis is necessarily limited to a system composed of identical particles. 

Finally, in section 5, this star body is delineated for the whole class of isochoric 
two-dimensional, macroscopically homogeneous, linear (shearing) motions. We are able in 
such circumstances to derive a maximum value for the particle concentration as a function of 
a certain flow parameter, ),. Elliptic motions reproduce the periodic particle arrangement, 
whereas hyperbolic ones do not. The "degenerate" case of a simple shear flow, which cannot 
simply be deduced by limiting continuity arguments from the other two types of flow lying on 
either side of it, is especially interesting. In three dimensions, two types of self-reproducing 
configurations are possible, though they yield the same maximum concentration; in general, 
the motion is almost periodic, since it can be viewed as a rectilinear trajectory in a 
two-dimensional lattice. 

2. LATTICE 

2.1. Basic notions 
Consider a suspension composed of an ordered repetitive three-dimensional array of 

identical rigid particles, immersed in a fluid continuum and extending indefinitely in every 
direction. From a formal point of view, the lattice A representing the group of translational 
self-coincidence symmetry operations of this spatially periodic medium, consists of the set of 
points 

R, = nil1 + n212 + n313, [2.1] 
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where 11,12,13 are three linearly independent vectors of R 3, serving as a basis of A, and 
{n~, n2, n3} -- n, say, are a trio of integers. The symbol 0 - {0, 0, 0} will be chosen to 

designate the lattice origin. 
Consider the second-order tensor 

def 
L ~ i~e~ + 12e2 + 13e3, [2.2] 

with unit vectors eL, e2, e3 denoting an orthonormal basis of the space R 2. Define l~j to be the 
projection it • ej of the basis vector It upon the direction ej. Since ii = L • e,. ---- ejl U (summation 
convention), eqn [2.2] may be expressed in the nonian form L = ejedu. Equivalently, l~j may 
be regarded as the element lying in the ith row and j th  column of the 3 x 3 L matrix. The 
determinant d(A) of the lattice A is 

d(h) = I det L l; [2.31 

it is assumed nonzero since the triad of noncoplanar basis vectors !1, 12, 13 a re  linearly 
independent. 

When L is proportional to the unit tensor I, namely L = II (with I a characteristic length), 
we obtain the orthonormal lattice of points with coordinates {nl, n2, n3} 1. This lattice, which 
plays a fundamental role in the subsequent theory, will always be designated by the symbol 
Y. In the general case, A is related to Yby the nonsingular linear transformation 

A = L Y .  [2.4] 

This may be employed to generate the most general lattice A by subjecting Y to such a 
transformation. 

The preceding definitions require further commentary, which is offered below. 
The formal representation of a basis by a single mathematical object is especially useful 

when it is desired to compare two bases. This point is elaborated upon in section 2.2. It should 
also be recalled that the determinant of the lattice is equal to the superficial volume ro of the 
unit cell. Thus, 

d(_A_) = Ill × 12.13 [ ~ T o. [2.5] 

It is equally well known that L can be chosen in an infinite variety of equivalent ways. It 
can be shown (Lekkerkerker 1969) that a tensor L' is a basic tensor of the lattice A if, and 
only if, 

L' = N • L, [2.6a] 

with 

det N = _+ 1, [2.6b] 

wherein N is a unimodular matrix composed of integral elements. Of course, the relation 
[2.6] is an equivalence. 

2.2. C o m p a r i s o n  be tween  la t t ices  

The norm of a second-order tensor T may be defined by the relation 

Ilrll = m a x  I T,j l .  [2 .7]  i , j  

It is readily confirmed that this definition is trivially a norm in a formal sense. With the aid 
of this definition, the neighborhood of a lattice can be defined by the following scheme 
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(Lekkerkerker 1969): Let A be a lattice, L be a basis of A and let 6 be a positive number. The 
(L, e) neighborhood of the lattice A is the set of lattices 3_' possessing a basis L' such that 

I L L ' -  LII < e. [2 .8]  

Obviously, when ~ is very small, the lattices A and h' differ but little. 
It will subsequently prove necessary for us to be able to compare two lattices, especially 

when they are almost identical. For example, section 5 is concerned with lattices that are 
"almost periodic" in time. This statement requires precise quantification. Of course, 
functions of k continuous in the norm [2.7] do not differ too much for the case of two almost 
identical lattices. 

From a technical point of view it is, of course, important to confer upon the set of lattices 
the structure of a topological space; however, we shall not embark on such formal details 
here. 

2.3. Dirichlet, Kronecker and Weyl theorems 

This subsection addresses a particular question which seems at first rather foreign to the 
subject at hand, but which is, in fact, crucial to a precise understanding of the kinematics and 
dynamics of a periodic suspension undergoing a simple shear. Loosely stated: "What  is the 
interaction of a straight line with the lattice Y?" As a rigorous analysis is provided elsewhere 
(Brenner & Adler 1985), we shall confine ourselves to a few observations, illustrated by 
reference to the relatively simple case of a two-dimensional lattice. 

Consider the straight line 

y = ax, [2.9] 

of slope a. If it is assumed that a is rational, this slope can be expressed as the irreducible 
integer ratio p/q.  The straight line [2.9] will then periodically intersect those lattice points 
whose coordinates are integral multiples of (q, p). This fact is illustrated in figure 1 (a). The 
periodic character of the interaction can be emphasized even more dramatically by 
representing the straight line on the unit square [0, 1 ] 2, i.e. y (rood 1) as a function of x (mod 
1 ), respectively designated by (y) and (x). This function is represented by a finite number of 
line segments, as depicted in figure 1 (b). 

The remainder of this subsection addresses three basic questions revealed by figure 1 (b): 
(i) When a is irrational, what is the interaction of the straight line with respect to the lattice 
points? (ii) . . .  with respect to any point of the unit square? (iii) What is the pattern 
corresponding to figure 1 (b) ? These problems are solved by invoking three theorems, bearing 
the names of Dirichlet, Kronecker and Weyl (Hardy & Wright 1979). 

When a is irrational and E a positive number, a lattice point other than 0 can be found 
whose distance from the straight line y = ax is less than E. This statement can be markedly 
improved in accuracy by considering the trace made by the straight line y = ax on the unit 

d 

J t-., 
(o) 

Y 

o I 
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Figure 1. Interaction of a straight line with a two-dimensional lattice Y when the slope is 
rational. (a) In this example p = 2, q = 3. (b) y (mod 1) as a function of x (mod 1). The straight line 

passes continuously into itself. 
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square. This straight line is dense in [0, 1] 2. Whatever point of the unit square may be 
chosen, a trace of this line can be found arbitrarily near to the specified point. (This is 
obviously not true when a is rational, as is clear from figure 1 (b).) In terms of visual imagery, 
the final unit square will appear to be grey after passage of a sufficiently large number of 
traces. But, and this represents the final improvement, the unit square will be uniformly 
grey, i.e. the lines are uniformly distributed on [0, 1] 2. 

Of course, this uniform pattern is the same for any irrational value of the slope a; nor 
does its validity depend either upon a possible shift of origin. 

Another enlightening context for viewing the problem is as a dynamic process (Arnold & 
Avez 1968, Parry 1981). In this sense, Weyrs theorem may be viewed as the first ergodic 
theorem to be discovered. Thus, consider the sequence {x,} of discrete points, 

xn = n~, 

where ~ is irrational and n an integer. Then, for all continuous functionsfdefined on the unit 
interval [0, 1], and satisfying the condition f (0) = f (1), we have that 

1 N-I f0  i f ( y  ) lim ~ ~_.f  (x.) = dy 
N ~  n-O 

[2.10] 

since {x,} is uniformly distributed (mod 1), In other words, the dynamic process x, = n~ is 
ergodic when ~ is irrational. 

Finally, as is evident from the transformation [2.4], the previous results can readily be 
extended to the case of a general lattice A through the use of the affine transformation L. The 
easiest way to proceed is by applying the inverse transformation L -I and subsequently 
considering the rational or irrational character of the problem. 

3. BODIES ON SIMPLE LATTICES 

This section is devoted to the relation between convex and star bodies and lattices. In a 
sense, the prior study, albeit brief, of the behavior of a straight line in an array furnished the 
first and simplest example of the possible relationships existing between a geometric object 
and a lattice. 

The goal of this section is twofold: (i) to provide a quick overview of the static properties 
of a granular porous medium composed of identical convex particles--a situation with a 
broad field of applications; (ii) to provide an entr6e into the kinematics of a granular periodic 
suspension dispersed in a uniform shear flow; for, as will be shown in sections 4 and 5, this 
kinematical study is closely related to the admissibility of very particular convex bodies 
(such as ellipsoids), or star bodies (such as hyperbolae), with respect to the lattice at a given 
time. 

The following development is derived largely from Lekkerkerker (1969). 

3.1. Convex bodies 
A set H of R" is called convex if, for every pair of points x and y belonging to H, it 

contains all the points of the line segment joining x to y. Examples of convex bodies in R" are 
spheres, cubes, rods and, more generally, ellipsoids and parallelotopes. As such, many, if not 
most, particles of physical interest are included within the class. A red blood cell, however, 
because of its biconcave shape, furnishes a simple example of a nonconvex body. 

In view of the proposed applications to suspensions, attention will be focused primarily on 
spheres. Nevertheless, most of the following analysis retains its validity for general convex 
bodies, provided only that they possess a center of symmetry, hereafter designated as O. In 
most cases the lattice origin 0 is confounded with this center of symmetry. The body hK, with 
~, a scalar, is the set of points ~,x--where x belongs to K. 
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Figure 2. Admissibility and packing. In (a) the unit square lattice Y is admissible for those circles 
whose radius is smaller than unity; (b) shows a packing of circles of radius 1/3 along Y. In (c) the 

admissibility of a circle of unit radius is equivalent to the packing of circles of radius 1/2. 

The central pair of concepts arising in the subsequent analysis, and which are related by 
an equivalence, are (i) the admissibility of a lattice for a given body, (ii) the packing of 
bodies according to a given lattice. A lattice A is called admissible for an arbitrary body H if 
it has no point other than its origin 0 contained within the interior of H. It is called strictly 
admissible if it contains no point, including 0, of H. From this, the critical determinant of the 
body H can be defined as 

A(H) = inf [d(A):A strictly admissible for H}. [3.1] 

These concepts are illustrated for the case of circles in figure 2. 
For K a fixed bounded o-symmetric (i.e. centrally symmetric, with symmetry center O) 

convex body, consider the spatially periodic medium derived from K by translations 
belonging to the lattice A; this medium may be formally represented by 

{K + x; x ~ A}, [3.2] 

where K + x denotes the displacement of K by the position vector x. This collection of bodies 
is called a (K, A) packing if no pair of bodies possess an inner point in common. This 
important definition is illustrated in figure 2. Note that a (K, A) packing is not necessarily a 
real physical packing (Gray 1968), for which actual contact between adjacent particles is 
required for mechanical stability. Here the particles do not necessarily touch. A (K, A) 
packing represents only a possible geometric arrangement of the particles. The terminologi- 
cal conflict here between mathematical and engineering usage of the word "packing" will be 
resolved in favor of the former; however, the intended meaning will usually be evident from 
the context. 

Also illustrated by figure 2 is the fact that the concept of packing is closely related to that 
of admissibility. Actually, the following equivalence exists: 

A lattice A is a packing lattice of K if, 
and only if, it is admissible for 2K. 

[3.3] 

This equivalence partly explains the central theoretical role played by convex bodies in the 
subsequent theory. 

Packing concentration or density cI, represents the volumetric proportion of particles in 
space or, equivalently, in the unit cell. It is expressed quantitatively by the formula 

O(K, A) = V(K)/d(A), [3.4] 

where V(K) is the volume of the body K. 
The maximum density of a lattice packing of translations of K is called the density of 

closest lattice packing, and is denoted by ~(K). It can easily be related to the critical 
determinant for the body 2K, according to the equivalence [3.3]. This yields 

6(K) = V(K)/A(2K). [3.5] 
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Of course, cI,(K, 5_) and hence ~(K) are always less than unity. A nontrivial estimate of 
6(K) requires a more precise specification of the convex body under consideration. The 
search for the best (i.e. the least) upper bound for di(K) constitutes a not insignificant portion 
of the efforts heretofore devoted to investigations of the geometry of numbers. 

Basic results concerning the packing of circles/(2 in the plane and of spheres K3 (each of 
unit radius) in the Euclidean space R 3 are 

A(K ) = = [ 3 . 6 ]  

zX(K ) = = [ 3 . 7 ]  

Historically, these estimates for the circle and sphere are due, respectively, to Lagrange 
(1773) and Gauss (1831). 

Finally, we briefly address the important question of invariance under an attine 
transformation. As already observed in the previous section pertaining to the interaction of a 
straight line with a lattice A, the effect of a nonsingular linear transformation L is to change 
the numerics, but not the essential geometrical nature of the problem. It is convenient to 
assign a particular role to the integral lattice Yobtained from A by the inverse transforma- 
tion L -1. For instance, it is obvious that K contains a point other than 0 of A if, and only if, 
L-IK contains a point other than 0 of Y. As such, the definitions of admissibility and packing 
remain invariant under an affine transformation. It is equally easily shown that the density 
too remains invariant, in particular the maximum density b(K). Explicitly, 

~(LK) = ~(K). [3.81 

These observations eliminate the need for essentially redundant analytical efforts. For 
example, it is unnecessary to consider ellipsoids separately from spheres, since ellipsoids 
constitute mere affine transformations of spheres. Hence, the maximum density ~ for 
ellipsoids is the same as that for spheres. 

3.2. Star bodies 
Rather remarkably, star bodies do not occur as such in the study of static packings of 

convex particles, but rather arise naturally only in the kinematic study of periodic 
suspensions of convex particles. A star body may be defined as a set of rays S (i.e. half-lines 
emanating from the origin) such that if the position vector x belongs to S, then ~x is an inner 
point of S for any number h (0 __< h < 1). (More precisely, closure of S should be demanded, 
but this technical feature will be ignored here.) 

Though a convex body is a star body, the converse is not true. The most classical example 
of a star body is the domain 

So: Ixyl 1 [3.9] 

bounded by a hyperbola, as illustrated in figure 3. As hyperbolae frequently arise in 
applications, attention will be focused more-or-less exclusively upon them. Evaluation of the 
critical determinant constitutes the most important element. It can be shown (Lekkerkerker 
1969) that the critical determinant of the body So is 

m(So) = 4-5. [3.101 

Moreover, an example of such a critical lattice is the one generated by the two points (1, 1) 
and (1/2 - ,~-5/2, 1/2 + q~/2), as indicated in figure 3. 
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Figure 3. The domain So bounded by a hyperbola and a possible critical lattice. 

Finally, consider the asymmetric two-dimensional domain S,.e, defined as 

-o~ <_ x y  <_ ~, 

where a and/3 satisfy/3 >_ a > 0. Of course, a first rough approximation of the critical 
determinant is 

A(S.,e) >__ A(Se,~). [3.1 1] 

However, considerable improvement is possible (Lekkerkerker 1969), as revealed by the 
following theorem: Let a and/3 be two real numbers satisfying the preceding inequality. Set 
r = f l / a ,  and designate by s the largest positive integer such that s _< r, and by t the smallest 
positive integer such that t >_ r. Then, 

A(S~,e) >__ min [a(t 2 + 4r) '/2, a ( r  2 + 4rg/s) l / z] .  [3.12] 

4. LATTICE MOTION AND ITS GENERAL PROPERTIES 

Thus far the lattice has been considered as motionless. Henceforth, it will be regarded as 
deformed by a general motion, with a view towards eventually establishing the suspension's 
rheological properties. Lattice deformations have already been extensively studied in 
connection with dynamical theories of crystal lattices (Born & Huang 1954). However, 
kinematics will be studied in this paper without regard to its dynamical origins. 

Introduction of time as an additional independent parametric variable carries with it two 
new notions. The first pertains exclusively to the lattice itself, and entails the concept of 
"almost periodicity." The second is engendered by the finite size of the particles, and 
involves the concept of "compatibility." 

4.1. H o m o g e n e o u s  i sochor ic  m o t i o n s  

A lattice is said to be in motion if the basic vectors li ,  o r  equivalently the tensor L, depend 
upon the time t. If a lattice is deformed in such a way that the resulting structure remains a 
perfect lattice, the deformation is called homogeneous. Attention will be restricted to this 
class of deformations. In such circumstances L depends only upon time, but not position. This 
class of lattice deformations can be characterized by the deformation gradient dyadic F as 

It(r) = F? • I,(t). [4.1al 

Equivalently, 

L(r) = F? • L(t). [4.1b] 
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In the present rheological context, the lattice deformation may be regarded as arising 
from its suspension in a maeroscopically homogeneous linear shear flow. The local fluid 
velocity vector field v at a general point R of such a spatially periodic suspension will then be 
assumed to be of the form 

v (R  + R , )  - v (R)  = R ,  • G, [4.21 

where G is the constant macroscopic velocity gradient dyadic. In other words, the gradient vv 
of the local velocity field is instantaneously spatially periodic for all time. For the 
applications we have in mind, G will be supposed both time independent and traceless, the 
latter condition requiring that 

tr G = 0. [4.3] 

Consequently, the macroscopic motion is isochoric (cf. [4.6]). 
Equation [4.2] may be employed to establish the time variation of L as 

dL/dt  = G t .  L. [4.41 

Upon integration this yields 

L(t) = (exp G~'t) • L(0), [4.51 

from which the deformation gradient F is readily deduced by comparison with [4. lb]. [Note 
that exp Gtt = (exp GOt.] 

The volume of a unit cell remains constant when subjected to an isochoric motion, for 
according to [2.5], 

to(t) = det[L(t)] = [det(exp G?t)lro(t = O) 

=- ro(t = 0), 
[4.61 

since G is traceless. As the unit cell always contains the same suspended particle volume, it is 
easily shown that the solids concentration 4~ in the suspension remains constant in time when 
it is subjected to such an isochoric motion. 

4.2. "'A lmos t periodic" functions 

The theory of almost periodic functions, pioneered by H. Bohr, is essentially a 
generalization of the theory of periodic functions, which leaves intact the property of 
completeness of the corresponding Fourier series. A formal definition is as follows: 

A continuous functionf(t) is almost periodic if 
¥~, 3r(E), T E  {0, r (~) ] / l f ( t  + T) - f ( / ) [ _ <  E. 

[4.7] 

Instead of developing the major consequences of this definition, which may be found, for 
example, in Bohr's (1947) treatise, we shall insist upon the fact that the example of section 2 
(i.e. the straight line in a two-dimensional array) furnishes an example of an almost periodic 
function, if it is properly considered as a vectorial function of time (i.e. as a trajectory). 

The equation [2.9] of a straight line can be written equivalently as the parametric curve 

x = t ,  y=~jt,  [4.8] 
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with ~ a real coefficient. Note that (y) = f ( x )  is a periodic function of x, though we shall not 
be interested in this explicit functional dependence. Rather, we shall again consider the 
trace, 

(x) = (t), (y) = (~:t), [4.9] 

of [4.8] on the unit square. Here, as in the paragraph containing [2.9], (x) and (y) 
respectively designate x(mod 1) and y(mod I). It can be proved that the vectorial function 
((x), (y)) is an almost periodic function of time. This proof can be effected directly as an 
immediate consequence of Dirichlet's theorem (of. Brenner & Adler 1985), Of course, when 

is rational the function is periodic, since the trajectory passes over itself repeatedly [cf. 
figure 1 (b)]. 

4.3. Kinematic properties of  lattices 
The two new kinematical concepts discussed below furnish the key to the eventual 

calculation of the suspension's rheological properties. 
4.3.1. Compatible packing 
Since the rigid suspended particles are incapable of mutual interpenetration, the lattice 

packing must remain a lattice packing for all time in order that the geometric existence of 
the configuration actually be possible at any time. This leads to the following notion of 
compatible packing: 

I any time for the particles. 
A packing is compatible if it is a packing at [4.10] 

Two clarifying remarks are necessitated by this definition. Consider first the case of 
spherical particles of radius a. The distance between two centers is necessarily larger than 
4a2: 

V {n}, t R~(t) ~ 4a 2. [4.1 la] 

Equivalently, since 

R.(t) = (exp Gtt) • R.(0) = R.(0) • exp Gt, 

this requires that 

R,(0) • (exp Gt) • (exp G~t) • 1~(0) >__ 4a 2. [4.lib] 

This inequality, in which the Cauchy-Green tensor appears, obviously depends upon two 
factors--namely the particular nature of the deformation gradient F and the initial value of 
Rn. 

For nonspherical particles, the compatibility condition also depends upon particle 
orientation. Of course, this orientation cannot be assessed by a purely kinematical study, but 
rather devolves upon supplemental dynamical considerations. However, two pertinent radii 
can be introduced to partially characterize these particles. These, ,Omi n and Pm~, are 
respectively defined as the corresponding radii of the spheres contained in, and containing, 
the particle. It is easily recognized that if a packing is compatible for the sphere p . . . .  it will 
necessarily be compatible for any motion of the particle. Conversely, if the packing is 
incompatible for the sphere Pm~., it will always be incompatible for any motion of the particle. 
Though useful in their generality, these considerations may sometimes yield rather loose 
bounds. 
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Figure 4. Periodic character of a lattice motion in a simple shear flow. The mean flow is parallel to 
the x axis. The lattice obviously returns to its original configuration after the elapse of a time period 
of duration T, though different particles are needed to effect identify of the two lattices. This 

corresponds to the introduction of N in equation [4.12]. 

4.3.2. ".4 lmost periodicity" (in time) of lattice configurations 
The second important property of deforming lattices is their ability (or inability) to 

reproduce themselves in time. However, exact reproducibility is too restrictive a criterion. By 
means of the topology introduced in section 2.2, almost periodic lattices can be defined as 
follows: 

A lattice motion is almost periodic if 
V ~ > 0, 3 ~'(~), T ~ [0,r(~)], N(E) a unimodular 
integer matrix/IIN, t ( t  + r) - L(t)ll-< ¢. 

[4.12] 

This definition does not require that the basis of the lattice be almost periodic, but rather 
only that the lattice itself be almost periodic; that is to say, it is required that two bases of the 
lattice at different times be equivalent. This explains the introduction of the unimodular 
matrix N in [2.6]. This point is exemplified in figure 4. 

Recognition has yet to be given to particle orientation in delineating the property of 
reproducibility. Though obviously falling outside the scope of pure kinematics, it neverthe- 
less deserves a few comments. Suppose, for example, that the particles are ellipsoids of 
revolution, whose angular orientation is represented by the unit vector e (Brenner 1981), 
locked into the spheroid and lying along its symmetry axis. As a special case of [2.2], the 
geometry of the suspension can then be fully characterized by the four vectors I~, 12, ! 3 and e, 
each of which depends upon time. One can introduce a norm on this set and subsequently 
define, in a fashion paralleling [4.12], the concept of almost reproducibility of the 
suspension. Though representing an obvious generalization, the different natures of the 
vectors !,. and e must be emphasized; li is known at any time from [4.1a], whereas e remains 
part of the eventual dynamical problem to be solved. 

4.4. General compatibility condition for a suspension of spherical particles 
A criterion can be derived from the definition [4.10] of a compatible lattice that can be 

conveniently employed for the case of spherical particles. (These spheres, of radius a, are 
here denoted by K.) Towards this end, introduce a complementary definition: 

A lattice is compatible if it is admissible at any 
time for the body 2K. 

[4.13] 
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The static equivalence [3.3] is obviously replaced here by the following dynamic equiva- 
lence: 

A lattice A is compatible for the spheres K if, 
and only if, the (K,A) packing is compatible. , 

J 

[4.14] 

Proof of this lemma is obvious since the equivalence [3.3] is valid at any time. 
Let us now demonstrate the following property: 

A lattice is compatible if, and only if, it is 
admissible for the star body 8; that is for 

= Ix : x = (exp G~'t) • Xo, V x0 ~ 2K, V t C (-co, +~)}. 
[4.15] 

Since 2K is convex, and is thus a star body, it is obvious that • too is a star body. The sphere 
2K is contained within this star body. Explicitly stated, 

2K C 8. [4.16] 

A distance function (Lekkerkerker 1969) can be associated to 8. In this connection, note 
that two points lying on the same streamline maintain the same separation distance with the 
origin 0; that is, this distance is time independent. Hence, if the lattice is admissible for ~, all 
the lattice points except 0 lie at distances larger than unity. Thus (and conversely), all the 
trajectories of the lattice points lie outside the sphere 2K. 

This proof, which is quite formal--but efficient--has the advantage of maximally 
eliminating the special role played by the time. One consequence is that the concept of 
compatibility is completely independent of the specific time at which the lattice compatibil- 
ity is verified. Thus, compatibility can be confirmed at time t, or at any other convenient 
time, e.g. at time t = to, since at to the lattice configuration may possess features in common 
with related lattices already studied in other theoretical contexts. 

A useful physical interpretation of this state of affairs can be achieved by replacing the 
solid sphere 2K centered at the origin by a liquid dye-filled spherical fluid envelope. When 
this liquid sphere is subjected (for both negative and positive times) to the velocity gradient 
G, the dyed region of the space represents the body 8. Of course, this body • cannot contain 
any lattice point. 

A key element figuring in the above property is the particle's convexity, implicitly 
invoked via application of the equivalence [3.3]. Without this equivalence it would prove 
quite difficult to obtain any definite result. In a sense it would be necessary to replace every 

particle by dye, subsequently subjecting the suspension to shear. The resulting instanta- 
neously evolving configuration would obviously prove quite difficult to comprehend, much 
less analyze. 

Every specified motion and initial lattice configuration requires determination of the 
body ,£ and subsequent analysis of the admissibility of the initial lattice for 8. Such 
knowledge permits calculation of the maximal particle volume fraction, a quantity of 
considerable experimental import. With A(,_t') the critical determinant of 8, this maximum 
concentration is expressible as (cf. [3.5] ) 

6(K, Q) = V(K) /A(~) .  [4.17] 

Observe (and several examples of this property will appear in section 5) that this 
concentration depends upon the particular bulk motion G undergone by the suspension. 
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Nevertheless, a general estimate can be obtained for ~(K, G). As # contains the sphere 2K, 
the critical determinant for # is necessarily larger than that for 2K. Consequently, 

A(g) > A(2K). [4.18] 

The preceding equation implies, not surprisingly, that the kinematic maximal concentra- 
tion is always less than the static maximal concentration. Explicitly, 

6(K, G) _< 6(K, 0). [4.191 

This inequality, whose origin is quite obvious in the present framework, appears to have been 
overlooked in the past. Many semiempirical rheological constitutive equations (e.g. Mooney 
1951) contain an experimentally adjustable maximum solids concentration parameter, at 
which concentration the viscosity effectively becomes infinite. However, the kinematic origin 
of this parameter appears not to have been clearly pointed out before. 

5. T W O - D I M E N S I O N A L  M O T I O N S  

Concepts previously introduced in the abstract will be applied in this section to the broad 
class of two-dimensional shear flows. These motions possess two attractive features. The first 
arises from their ease of generation and control in a four-roller apparatus (Mason 1977), for 
example. The second is that a simple parametric decomposition is known (Kao et al. 1977) 
for these motions, reducing to only three the number of separate and distinct cases requiring 
elaboration. 

Following a brief exposition of these two-dimensional motions, an analytic expression 
will be given for the compatibility condition, thereby bringing to fruition one impetus for 
having initiated this study. For simplicity, the case will first be treated where one plane of the 
lattice lies in the plane of the bulk motion. Finally, the three-dimensional case will be 
studied. 

5.1. General description of  two-dimensional motions 
Following Kao et al. (1977), the most general two-dimensional incompressible linear 

motion can be written parametrically as 

u=Gy,  v=~Gx,  w = 0 ,  [5.1] 

where - 1 _< h _< 1. Scalar G is the shear strength. All possible flow variants are encompassed 
by ascribing this parametric range to ~,. Streamlines correspond to the set of values 

y 2  _ ~kX 2 = const. [5.2] 

The case ~, > 0 represents a family of hyperbolas, the asymptotes of which make an angle 
a with the x axis, where 

tan a = _ x/~. [5.3] 

Similarly, for h < 0 the streamlines given by eqn [5.2] are a family of ellipses with axis ratio 
_+ x/-L-~. When h = 0 the flow degenerates into a simple shear flow, for which the streamlines 
are rectlinear. Figure 5 (Kao et al. 1977) summarizes the entire family of trajectories. 

The deformation gradient exp Gt is easily calculated by first noting that since G = (ji + 
ij?,)G, 

G 2 = ~kG212, [5.4] 
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Y Y Y 

Pure Sire le Pure 
rotation sheet shear 
X ~-I (Rotational) (Irrototional) 

k : 0 x =+1 

Figure 5. Schematic of a family of two-dimensional steady flows showing the streamline patterns at 
the top and the velocity components at the bottom. By varying k from - 1 to + 1 the flow can be varied 

continuously from pure rotation (without deformation) to pure strain (with rotation). 

with 12 = ii + jj the two-dimensional idemfactor in the x-y plane. This eventually yields 

1 
exp Gt = 12cosh t* + G ~ sinh t* + (I - 12) /os!t  sinh/ !) 

-~ - ~ s  h t  cosht*  , 

0 

[5.5] 

in which 

t* = vrk Gt. [5.61 

5.2. Analytic expression of the compatibility condition 
Consider the case of spheres of radii a, whose centers are constrained to the x-y plane. 

According to [4.11 b] the distance d between a sphere initially located at (x = xo, y = Y0) and 
a sphere located at the origin, is 

d2=~{x2[(cosh2t*)(1 +~)+ 1-~]+2(sinh2t*)(x/~+~)XoYo 

+y2[ (cosh2 t* ) (1  - k )  + 1 - k ] } .  [5.7] 

Extrema of this time-dependent function are defined by 

dt* (d2) = (sinh 2t*) x~ 1 + + y~(1 + k) + 2(cosh 2t*) ~/k + --~ xoyo = 0, [5.81 

whose solutions provide the values, t*, say, that extremize d. Thus, the extremal values of the 
distance can be expressed, for instance, as 

1 1 
d2sinh 2t* ~ ~(1-~)(x- - -~+y~)s inh2t* l - (VCk+--~)xoYo,  [5.9] 

which must be larger than 4a 2 for any value (x0,Yo) belonging to the initial lattice. 
These equations display two rather disagreeable features: (i) Calculation of the values of 

time at which the extrema occur requires solution of a transcendental equation, namely 
[5.8]; (ii) confirmation of attainment of the minimum value must be performed for an 
infinity of pairs of initial values, as shown by [5.9]. 
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As a matter of chronology, it may be of interest to point out that equations [5.8] and 
[5.9], in fact, originally furnished the starting point for the present study--as they were 
quite straightforwardly written down at an early stage of the present analysis. However, we 
were unable to deduce any relevant information from them, except to notice the existence of 
the extrema cited. The novel feature of these equations was the presence of integers. This led 
naturally to a literature survey of the theory of numbers. In turn, this quickly led to the 
discovery of the existence of a whole mature field, the geometry of numbers, which then 
proved vital to the resolution and interpretation of these equations. 

It is, of course, possible to revert to the formal solution of these equations without ever 
mentioning the existence of geometric number theory. It appears to us, however, that this 
geometry provides a fruitful, indeed necessary, structure to the physical context in which our 
analysis is embedded. 

5.3. Compatibility condition for a plane lattice. Reproducibility 
A plane lattice refers to a two-dimensiona-1 lattice whose two basic vectors, !~ and iz, 

belong to the x-y plane in which the motion [5.1] takes place. This is the simplest possible 
case imaginable. Yet, simultaneously, it also displays most of the characteristic features of 
the three-dimensional case. It may be regarded as the limiting case that occurs when the z 
direction of a three-dimensional lattice is sufficiently large to eliminate concerns regarding 
compatibility in this direction. 

Hence, it now becomes necessary to consider the compatibility condition for the motion 
of circles of radius a, initially positioned along the lattice 1~, 12. Each of the following three 
subsections discusses the results according to the specific class of streamline prevailing, 
namely ~, < 0, ~ = 0 or ~ > 0. 

5.3.1. Elliptic streamlines: ~ < 0 
Streamlines here are the ellipses defined by [5.2]. It is a straightforward matter to 

demonstrate that the body 8 (of. [4.15]) is the ellipse ~ (h) [figure 6(a)]: 

~(X): y2 _ Xx 2 = 4a 2. [5.10] 

Hence, the distance between the origin and any point of the lattice will always remain larger 
than two particle radii 2a if the initial lattice is admissible for this ellipse. 

The maximal concentration of circles in the plane is obtained as the product of the 
maximal concentration of ellipses in the plane multiplied by the fractional area occupied by 
the circle of radius 2a contained within the ellipse [5.10] [see figure 6(a)]. The first term is 
given by [3.6], while the second is easily calculated as xFL--~. Consequently, the maximum 
density of circles K2 in the plane when the streamlines are the ellipses [5.10] is 

x < o) = 4 - : L  [5.11] 

A remarkable feature of the preceding expression is that the maximum concentration 
depends upon the kinematic parameter X, a characteristic already alluded to in section 4.4. 

Y y 

(o) Elliptic slreomlirms (b) HyperbM~ stremmliMS 
k<O X>O 

(¢) Simple ~heo~ flow 

~.0 

Figure  6. The  s ta r  body ~ for a two-dimensional  la t t ice  subjected to a two-dimensional  flow. 
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Note that 6(K2, X < 0) is equal to the static maximal concentration [3.6] for ~ = - 1. This 
fact is not surprising since it merely corresponds to a rigid body rotation of the lattice as a 
whole. Note further that b ~ 0 as X --, 0, corresponding to the case of a simple shear. This 
surprising feature will be further elaborated in section 5.3.2. 

A "densest lattice" example is easily obtained by submitting the lattice basis (1, 0), 
(1/2, ,¢~/2) to the affine transformation 

[5.12] 

which changes the circle of radius 2a into the ellipse ¢ Q,). 
The motion is obviously periodic (see [5.5] ), possessing a period of rotation 

271" 
T= [5.13] 

deriving from [5.5] and [5.6]. 
5.3.2. Simple shear flow." X = 0 
In this situation the ellipse N(~) degenerates into the ribbon ~'o, defined by 

To: [y[_< 2a. [5.141 

This ribbon is an unbounded convex body. As such, according to Minkowski's theorem 
(Lekkerkerker 1969), it contains points of the lattice. 

This degenerate case contains an ambiguity, which nicely illustrates the discontinuous 
character of the problem under consideration. The body • is not exactly the ribbon ~'o, but 
rather the double ribbon 

To: 0 < l y l - < 2 a ,  [5.15] 

which arises from the fact that the fluid velocity [5.1] vanishes for y = 0. Thus, lattice points 
on the x axis become allowable, since they do not move relative to the origin. 

This represents the only possibility for a compatible motion according to Dirichlet's 
theorem. This theorem may be used in the following manner: Employ the linear transforma- 
tion I.-~, which transforms the actual lattice Ao back into the integral lattice Y defined in 
section 2.1. The axis y = 0 is then transformed into a straight line Lo. If the slope of Lo is 
irrational, there then exists an infinity of lattice points lying as close as may be desired from 
Lo; hence, the motion is not compatible, since condition [5.15] is violated. The slope must 
therefore be rational, meaning that Lo may be taken as one of the basic directions of the 
lattice. Equivalently, when L is applied to Y, one axis of the lattice must necessarily lie along 
the x axis. 

The compatibility condition may thus be enunciated as follows: 

A two-dimensional lattice is compatible with a 
simple shear flow if, and only if, one of its 
basic vectors is parallel to the flow, while 
the absolute value of the projection of the 
second lattice vector onto the axis 
perpendicular to the flow exceeds 2a. 

[5.16] 
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This condition is illustrated in figure 6(c). In an interesting sense, the simple shear greatly 
restricts the geometric nature of the suspension. It may be said to "organize" the 

suspension, 
The maximum concentration is easily calculated by first packing the ribbons in the plane 

and then the circles within the ribbons. The areal density of ribbon packings is obviously 
unity, since they can be simply juxtaposed, whereas the maximum density of circles inside of 

a ribbon is 7r/4. Consequently, 

6(K2, ), = 0) = r / 4 .  [5.171 

Finally, as already observed in figure 4, the lattice pattern is periodic. The period is 

[l~x[ 
r = - -  [ 5 . 1 8 1  

al t2,1' 

which involves the two constant geometric characteristics of the lattice. 
5.3.3. Hyperbol ic  s treamlines:  X > 0 

In this situation, which entails open streamlines, the star body # is described by the 
asymmetric hyperbola 

~¢(X): _4Xa 2 < y2 _ ~¢2 ~ 4a 2. [5.19] 

Application of the linear transformation A to the (x, y) coordinate system transforms the 
latter back into the standard case, 

A: = ~ a - x / - X  1 y 

of section 3.2, whose determinant is 

[5.201 

In this new coordinate system the star body 7~ (X) is expressed as 

wherein 

- X  <- X Y  ~ 1. [5.221 

In the present case X belongs to the interval [0, 1 ], whence an integer n can always be 
found such that 

1 1 
- -  _ X _< - .  [5.23] 
n + l  n 

Hence, an immediate application of [3.12] yields the following estimate for the critical 
determinant: 

A(X) >__ min[ml(X), m2(~.)], [5.241 

[ ml(X) = X (n + 1) z + [5.25a] 

det(A) - 2a 2. [5.21] 
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It can readily be shown that 

and 
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[5.25b1 

m] < m 2 [5.26a] 

provided that we remain within the interval [5.23]. Hence, in every such interval, both 
possibilities [5.25] need be entertained. They become equal somewhere in the middle of the 
interval [5.23], namely at the value 

l{[ ( } X(n) ( n +  1) 2 4 + ( n +  1) 2 1 + - 2  ( n =  1 . . . . .  ~). [5.271 

Estimates m] and m2 for two successive intervals [5.23] coincide at the value of X 
common to these two intervals. Hence, the function A(X) is continuous. 

The maximum concentration is easily estimated from the critical determinant to be 

,~4X 
~(x) _~ 2~(x)" [5.281 

More precisely, the following two possibilities exist: 

[1 ] 
X C  ~ •(n), tS(X)_< 

71" 

2[~,(n + 1) 2 + 4] ]/2; 

~(x) __< 

+ 

[5.29a] 

[5.29b] 

This upper limit possesses several interesting features: It tends to zero when A does; again, 
a discontinuity occurs for the limiting simple shear case, and for the same reason as 
previously stated. This function, which is portrayed in figure 7, is not always differentiable. 
It has the appearance of a saw, whose teeth move closer together as ~, ---, 0. Simultaneously, 

1.0 

i i 
-1.0 - - (15  

l 

) . - 0  periodic 

// . aperiodic 

i 
0,5 t .0 

Figure 7. The max imum density ~(K2, ~) as a function of the flow parameter  X for a two-dimensional 
lattice. 
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the teeth become smaller. Such pathological behavior is rarely encountered in physical 
phenomena. 

Simpler estimates, albeit looser, can be obtained for/~(~). For instance, estimate [5.29b] 
may be employed for the whole interval [0, 1 ]. This corresponds, in fact, to an estimate by 
Segr6 of the critical determinant, as reported in Lekkerkerker (1969). 

Finally, it is evident that the lattice cannot be self-reproducing in such hyperbolic flows. 
In the X Y  coordinate system, defined by [5.20], the deformation gradient is diagonalized, 
whence the lattice points are transformed as 

X = e"Xo, Y = e-:Yo. [5.30] 

Obviously, the reproducibility criterion [4.12] can never be satisfied. 
5.3.4. Conclusions 

We may now gather all the information obtained in section 5.3, and thereby represent the 
maximum concentration as a function of the kinematic parameter ~,, together with the 
reproducibility of the flow in figure 7. As already observed, this density is a discontinuous 
function of h in the neighborhood of ~ = 0. This discontinuity is specially interesting since it 
yields two different limiting density values, according as ~,---0+ or h---~ 0 - .  The 
asymmetric variation with ~ of the density derives from the two different patterns prevailing 
for ~, > 0 and ~ < 0, corresponding respectively, to open and closed trajectories. 
5.4. Compatibility condition for  a three-dimensional lattice. 

Reproducibility 

The approach espoused in section 5.3 is here extended to a three-dimensional lattice. This 
extension is straightforward, at least in principle, for elliptic and hyperbolic flows. Some new 
features, however, arise for the case of a simple shear flow. 

5.4.1. Elliptic streamlines: ?~ < 0 

In the present situation the body # becomes the three-dimensional ellipsoid 

oo,(h): y2 ..}_ Z 2 - -  XX2 .~ 4a 2, [5.31] 

which is represented in figure 8. In a manner strictly paralleling that used in section 5.3.1, 
the maximum concentration of spheres (K3) is found to be 

8(K3, X < O) = ~ ff-L-~. [5.32] 

Other features of the problem remain trivially the same as for the two-dimensional case, 
especially the periodic character of the lattice. 

5.4.2. Simple shear flow: ~ = 0 

As for two-dimensional lattices, self-reproducing motion is not possible in general unless 
it becomes degenerate via a particular relative configuration of the velocity field with respect 
to the lattice. However, in three dimensions two possible degeneracies exist: (i) The direction 
of the flow is parallel to a lattice plane; (ii) the direction of the flow is parallel to a lattice line. 

z 

[o) E~llptic s~rQomlines 
) , ( .0  

{b) Hy!O~"bO]¢ straamllrall 

Figure  8. The  s t a r  body  ~ for  a t h ree -d imens iona l  la t t ice  sub jec ted  to a two-d imens iona l  flow. 
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, J ! ~  

/ / y y 

(a) SHde flOW 

/ / 

(b) Tube flow 

Figure 9. The two possible configurations for a three-dimensional lattice in a simple shear flow. The 
velocity field is given by u = Gz. 

In the first situation the flow will be termed a slideflow; in the second, a tubeflow. Reasons 
for selecting these names will become evident. 

An investigation of the properties of these two possible flows now follows. 
5.4.2.1. Slide flow 

Suppose, as depicted in figure 9(a), that the direction of the shear flow is parallel to the 
x-y plane, which also contains the lattice vectors 11 and 12. Without any loss of generality we 
may write 

u = G z ,  v = 0 ,  w = 0 .  [5.33] 

Hence, no relative particle motion occurs in a plane perpendicular to z. Vectors ! l and 12 thus 
remain constant in time. Accordingly, the geometry of the lattice is characterized by the 
position of the vector 13 alone. Since the projection of 13 upon the z axis remains constant, only 
its projection onto the x-y plane need be known. But the trajectory of the projection of ! 3 upon 
the x-y plane is a straight line. Thereby we are led back to the canonical problem studied in 
section 2 of the behavior of a straight line within the (ll, 12) lattice. 

According to Dirichlet's theorem the projection of 13 onto the x-y plane may be as close as 
desired to a specified point of the two-dimensional lattice (ll, 12). In order that the motion 
remain compatible the projection of 13 onto z must be larger than 2a. Explicitly, 

1133 I >-- 2a. [5.34] 

A way exists of envisioning the physical realization of this property, namely the imagery 
of slabs sliding over one another. Hence, the choice of the name assigned to the flow. This 
picture permits an elementary calculation of the maximum concentration. Since the slabs 
can be juxtaposed, as were the ribbons in the plane in section 5.3.2, their maximal 
concentration is unity. On the other hand, the maximal concentration in a slab derives from a 
hexagonal pattern, and is thus equal to a-/3 xf3. Hence (see also equation [5.35b]), 

7I" 
6(K3, ~, = 0) = 3----~' [5.35a] 

According to the almost periodicity condition [4.12], interest exists only in the projection 
of 13 upon the x-y plane, modulo (!1, 12). As a direct consequence of section 4.2, such a 
function is known to be almost periodic. Hence, in general, the sliding motion of a lattice is 
almost reproducible, a property which generalizes the reproducibility of a two-dimensional 
lattice in a simple shear flow. 
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5.4.2.2. Tube f low 
Consider the second possibility, where the flow is parallel to the lattice vector il, as shown 

in figure 9(b). This flow is again assumed to be of the general form [5.33]. Visualization of 
the suspension motion can therefore be achieved by embedding it in the context of a series of 
tubes having axes lying perpendicular to the y-z  plane, with the spheres slipping through 
these tubes. Note that no relative motion of sphere pairs exists within a given tube, and no 
lateral motion occurs in the y-z  plane. The velocity of the spheres is proportional to the tube 
elevation z, or equivalently to the distances 123 and 133. The imagery here is slightly more 
difficult to visualize than that of the previous configuration. 

Via this representation the maximal sphere concentration is easily shown to be equal to 
the maximum concentration of cylinders in R 3, multiplied by the maximum concentration of 
spheres in a cylinder of identical radius. The first concentration is achieved with a hexagonal 
pattern, and is equal to r / 2 , f3 .  The second is equal to 2/3. Therefore, in tube flow the 
maximum concentration is 

7I" 
6 ( K 3 ,  ~k = 0 )  = 3 - ' - ~ "  [ 5 . 3 5 b ]  

That this value is identical to that derived for a slide flow is remarkable. 
In order to be able to represent the positions of the spheres it suffices to know only the 

projections of the lattice vectors 12 and 13 onto the x axis. These projections, 

121 = Gl23t + const, 
[5.36] 

132 = G133t + const, 

are linear functions of time, with coefficients proportional to the vertical coordinate of the 
tube. This motion can be represented by a straight line within a plane. Moreover, interest 
exists in the configuration only modulo Ii~ in both directions. Hence, exactly the same 
situation prevails as before. As such, the current motion is also almost periodic. 

5.4.2.3. Conclusions 

The preceding conclusions can be coalesced into a single proposition, namely 

Self-reproducing motion of three-dimensional spher- 
ical-particle suspensions in simple shear flow is only 
possible in either of two configurations, termed tube 
flow and slide flow. In both cases the maximum 
concentration is 

71" 
8(K3, X = 0) - 3---~" 

Additionally, the motion is almost periodic in both 
cases. 

[5.37] 

5.4.3. Hyperbolic streamlines: ~ > 0 

For this case the body ~ becomes the "four-legged starfish," 

~ , (h) :  _~,(4a 2 _ z 2) < y2 _ Lx2 __< 4a 2 _ z 2, [5.38] 

which is represented in figure 8(b). 
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Apply to the (x, y, z) coordinate system the transformation 

A': 1 = ~ a  - x ~  1 , [5.39] 

0 0 

representing the three-dimensional counterpart of [5.20]. This transformation possesses the 
determinant 

det(A') : ~ a  3. [5.40] 

In terms of this new coordinate system the star body 7/'(X) is described by the equation 

-X(1 - Z 2)_<XY<_ 1 - Z  2. [5.41] 

To our knowledge no relevant study of this body exists. 
A simple estimate of the critical determinant may be derived as follows. Let us seek a 

critical lattice two of whose vectors are parallel to the X-Y plane. Hence, these two vectors, 1~ 
and 12, are necessarily those previously obtained in the two-dimensional case studied in 
section 5.3.3. 

Consider the plane Z = xf3/2. The section of the body g intersected by this plane is 

- X / 4  _< XY<_ 1/4, [5.42] 

The centered lattice (!1/2, 12/2) is admissible for this star body. Consequently, the lattice 

i~'12'13( It1+I212 ,112+1222 , ~-3) [5.43] 

is admissible for ~/'(X). Note that within the planes __+ x/-3/2, this lattice is identical to the 
lattice (It/2, 12/2), in which every other point has been suppressed. The corresponding value 
A'(X) of the critical determinant is then 

A'(X) = --~-~A(X), [5.44] 

with A(X) given by [5.24]. (Better estimates than [5.24] almost certainly exist, but the effort 
expended by venturing into such a technical problem may not result in sufficient improve- 
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Figure 10. The maximum density 6(K 3, X) as a function of the flow parameter X for a three- 
dimensional lattice. 
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ment to prove worthwhile.) Hence, the estimate derived for the maximum density in a 
hyperbolic flow is 

~(K3, h > 0) = 3~35(C, h > 0). [5.45] 

Lattice reproducibility does not obtain in such a flow, since by a trivial extension of 
[5.30] the lattice points transform as 

X = e"Xo, Y ~ e-t'Yo, Z = Z * .  [5.46] 

5.4.4. Conclusions 

All information obtained for three-dimensional lattices is gathered together in figure 10. 
Most comments offered in section 5.3.4 could be repeated here with equal veracity. Some 
interesting new features are introduced by simple shear flows. Observe that when compared 
with the two-dimensional lattice, the maximum density is multiplied by about the same 
factor, namely, 0.77, for each of the three types of flow. 

A c k n o w l e d g m e n t - - P . M . A .  was on leave at M.I.T. from the C.N.R.S. (France) during the 
preparation of this manuscript. 
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NOMENCLATURE 

slope of a straight line in eqn [2.9] or radius of a spherical particle 
square matrices defined in eqns [5.20] and [5.39] 
distance between sphere centers defined in eqn [5.7] 
determinant 
unit vector along the symmetry axis of a body of revolution 
unit vectors forming an orthonormal basis of Euclidean space R 3 
ellipse; ellipsoid 
continuous function 
deformation gradient dyadic of a lattice defined in eqn [4.1 ] 
scalar shear rate for a two-dimensional shear flow defined in eqn [5.1 ] 
macroscopic velocity gradient dyadic defined in eqn [4.2] 
generic convex body 
two- and three-dimensional hyperbolic bodies defined in eqns [5.19] and 
[5.38] 
dyadic idemfactor 
two-dimensional idemfactor in a plane 
circle 
o-symmetric (centrosymmetric body with an origin O) convex body; 
sphere 
basic lattice vectors of the lattice A 
projection of the basic lattice vector i~ onto the jth direction 
nonsingular afline transformation of a lattice A, defined by eqn [2.4]; 
straight line 
3 × 3 matrix, dyadic or second-order tensor representation of a three- 
dimensional lattice, defined in eqn [2.2] 
function of ?~ defined in eqn [5.25] 
integers 
triplet of integers locating a lattice point R~ or a unit cell n or {n} 
unimodular matrix composed of integers, either positive, negative or zero 
center of symmetry of a centrally-symmetric convex body 
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P,q 
R 

R. 
~'o; ~o 

S~.~ 
t 

t* 
tr 
T 

"r, Tij 
U, U, W 

v, v(a) 
V(K) 

x, y, Z 
(x), (y) 

Xn 
X 

x , Y , z  
Y 

integers 
generic position vector of a point 
position vector of a lattice point or unit cell 
ribbon; double ribbon 
star bodies defined in section 3.2 and eqn [4.15] 
two-dimensional hyperbolic domain 
time 
dimensionless time defined in eqn [5.6] 
trace 
period of a periodic or almost periodic function 
second-order tensor 
velocity components in the (x, y, z) directions, respectively 
local fluid velocity vector field at point R 
volume of convex body K 
Cartesian coordinates 
designates x (mod 1) and y (rood 1), as in Fig. 1 (b) 
discrete points 
position vector of a point in R" 
Cartesian coordinate system defined by eqn [5.20] or [5.39] 
fundamental integral lattice A such that I. defined in eqn [2.2] is the unit 
diagonal tensor 

Greek letters 
6(K), ~(K,A) 

A(H), AQ,) 

A 

r, ~(~) 
I" 0 

maximum possible density of a lattice packing of identical convex bodies K 
for the static and shear (X) cases, respectively 
critical determinant of a body H for the static and shear (~,) cases, defined 
in eqns [3.1] and [5.24], respectively 
small positive parameter 
parameter possessing the property that I ~ [ -< 1, and corresponding physi- 
cally to eqn [5.1] and fig. 5 
general or admissible lattice 
real number, rational or irrational 
time 
volume of unit cell, defined in eqn [2.5] 
volume fraction of particles in space, defined in eqn [3.4] 

Special symbols 
0 

-1  

t 
fl rt 

origin {0, 0, 0} of a lattice 
inverse operator 
transposition operator 
norm of a dyadic, defined in eqn [2.7] 
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